
Computational

Autonomy

Broadening the Focus

Computational Autonomy is seen as a way of enlarging the

narrow focus of a program, which carries out one instruction

at a time.

Instead of a program, there are many separate and

autonomous agents.

Each agent is assigned one or more relatively atomic roles,

and a reward/punishment structure is used to ensure the

agent “does what is required”.

With these agents cooperating with each other, it is thought

that problems in complex domains will become more

tractable.

Assumptions

There are several large assumptions present in the

foregoing:

• Autonomy of action is desirable

• A complex interaction is reducible to independent

 tasks

•The agents communicate with each other, but only

 with messages at the beginning and end of their

 tasks

• A stable and static punishment/reward structure can

 be devised for each agent

Autonomy of Action

Project Management is all about limiting autonomy of action

on the jobsite, because, untrammeled, it results in chaos.

Higher level control is exercised, to ensure a smooth

interaction among all the different crafts.

This can’t be exercised at the level of each craft, because not

one of them knows what the overall plan is.

A Complex Interaction

Organisation 1 Organisation 2

Purchaser

Accounts Accounts

Manufacturing

Manufacturing

Delivery

Supplier

eCommerce is often given as an example where autonomy is required.

If we look at the interaction, Manufacturing in Organisation 1 gives

Purchaser a requirement. The product may be available, or the Supplier

may need to modify what they offer, or Manufacturing may need to modify

their specification. Control is shifting back and forth, based on

communication of a complex object.

This is Distributed Control, not Autonomy

Punishment/Reward Structure

As any parent will tell you, it is very hard to devise a

successful set of punishments and rewards, particularly if

the agent can learn how to avoid one and maximise the

other.

Simply put, a static structure won’t work. An example is

drink-driving.

Drink Driving

People drive while drunk, with disastrous consequences.

Fines are increased, to stop the practice.

The people who can’t afford the fines don’t pay them, the

people who can afford them don’t feel constrained by them.

Potential loss of licence is introduced.

People drive while unlicensed.

The only effective deterrent is immediate incarceration.

This is typical of a static punishment structure attempting to

control behaviour of autonomous agents.

Alternative Approach

Rather than autonomy as a direct goal, it may be

better to pursue distributed control and complex

messaging, with computational autonomy

emerging as an end-product.

We show a network of quasi-autonomous

operators.

A Simple Operator

The PLUS operator determines

its response based on the state

of its connections - it can

propagate a state, a range or a

singular value down any

connection, including one that

functioned as an input.

The operator may appear to be

locked in a static framework.

Self Modification

X = +
List

Link
A%

X = +

B

C

D

B=9

C=3 X=5

D=-7

+

The statement

X = SUM(List)

requires that the PLUS operator

have as many connections as

the list has members - a

dynamic self-modification

property has been introduced.

The quake

struck

The PARSE operators

here analyse their

local environment,

and then change the

structure, destroying

themselves in the

process, allowing a

more complex

structure to emerge.

Punishment/reward is

irrelevant if altruism is

required.

Information Extraction

A Complex System

Information Extraction relies on

knowledge in the area, and the

knowledge is enhanced by the

information extracted.

This means that processes

interact - grammar helping to

resolve POS tags, semantics

helping to resolve grammar, and

so on. Distributed control and

complex messaging are essential

for complex applications.

Learning

If we are to justify the label of

autonomy for a system, then we

should expect it to learn from its

interactions. The diagram shows

operators connected together

that store occurrences in related

dimensions, then make those

occurrences available as

probability distributions, relying

on the ability of the network to

propagate ranges.

Autonomy

Autonomy is a natural result of building systems

with uncommitted structure, distributed control

and complex messaging. These same attributes

are needed for many applications in operations,

engineering, finance, management.

ORION Technology

